Velocity Book Review

Actually, the full title is Velocity: Combining Lean, Six Sigma and the Theory of Constraints to Achieve Breakthrough Performance – A Business Novel.  It’s of course listed on Amazon in kindle, paperback, and audible.  I listened to the audible version.

As is typical in business novels the characters tend to be flattened slightly to encourage the reader to pay attention to the content instead of the people in the story.  It’s a tough balancing act to have the characters and their problems be interesting enough so you’re emotionally invested in their outcome, but the author in this genre has the hard task of encouraging you to remember more about the lessons than the characters.  To do this, the authorial team included Jeff Cox, the co-author of The Goal (one of the books on my book list).

The book is well written though formulaic and its subject primarily follows implementation of the Theory of Constraints (TOC) not the implementation of Lean Six Sigma (LSS).  It does touch on it enough to help the audience understand how the disciplines can be used in concert with one another and compliment one another, but not to the extend that you learn about how to do statistical process control or value stream mapping.  While these things are alluded to or mentioned in the book, they’re mentioned as the book introduces the problems caused by applying them in ways that negatively impact the constraint.  They’re not directly mentioned at all in being a part of the solution set as the intrepid heroes (isn’t intrepid a great word?) work towards solving their problems.

I would have preferred that once the heroes had learned to apply TOC they would have spent more time value stream mapping those things that didn’t go through the constraint to find improvement there.  Or that they would have discussed more about finding the true optimum with regards to various treatments using six sigma techniques.

While that’s what I would have preferred, that would have slowed down the story significantly.  It wasn’t the intent of the authors and I’m kind of glad they didn’t do what I wanted.  The delivered a good book that introduced complimentary systems in a way that was engaging and now, because of that book and the example of their characters, I have context to do further research on my own and answer the questions I have from reading this work.

Bottom line.  Great book, glad to have read it!  Adding it to the Book List of books I’d recommend.

Tuning Past Your Optimum.

Justin is a good friend of mine at work and a Six Sigma Black Belt.  Over lunch the other day we were talking and he explained how sometimes people will tune past their optimum.  While the conversation was casual the lesson in life seems to be worth sharing.

Firstly, let’s introduce Six Sigma’s distribution curve courtesy of Michael Galarnyk’s post at towardsdatascience.com.Untitled drawing

What this curve does is enable the ability to predict the outcome of a particular operation.  In manufacturing that operation might be coating a particular widget.  Not all widgets get coated equally and some will fall outside of the quality specifications.  This curve would allow you to predict how much of those widgets have to get tossed due to poor quality.  Used properly you can use it to help manage the process to reduce the number of wasted widgets.  That’s a very basic description, but for this post it will need to suffice.

On the graph you can see the percentage of good output and the Greek letter Sigma symbolizing the deviation from the optimum output.  Ideally if you can manage a process down to only 6 Sigma (three plus and three minus) then the process is considered to be stable.  Stable processes can be improved.  Unstable processes cannot consistently be improved.

An optimum output would look like the graph above, but the curve would be taller and skinnier in the middle.

The time period used to create this graph also matters.  When Justin was using it for a particular part of the manufacturing process (bagging) he was taking a daily average.  This meant both shifts were combined.  He had a wide curve and wanted to make it skinnier.  When he reworked the data for each shift he noticed that neither shift was working their optimum.

Untitled drawing (2)

Each shift would tune this particular machine to where they knew the performance was good enough.  In the process they would inadvertently tune past where the machine could work at its optimum performance.

Justin explained how the machine was complex and each shift had recorded different settings in their notebooks to know how to set it for good-enough performance.  You could image that after fiddling with the machine for hours on a difficult shift that once you finally figured out settings that worked for you, you stuck with those settings.  Think of the pressure.  All the other parts of the manufacturing are stopped because the thing you’re working on isn’t performing right.  Everyone on your team would know you (rather your machine–but sometimes it’s hard to separate people from the problem) were the one holding things up.  Once you finally got it *working* you’d probably feel relieved and just want to move on.

While we don’t all work in manufacturing we’ve probably all had those experiences where others were waiting on us and the pressure that comes from that attention.  Inevitably we do have those parts of our personality and how we perform that are based on experiences that were hard–experiences that we don’t want to live again.  What if those experiences taught/encouraged us to tune our habits close to our optimum while still missing it entirely?

Six Sigma falls in the discipline of continuous improvement and while we may get some things right or right enough to succeed I’d like to believe that all of us in some ways have tuned our habits and processes past our optimum.  As challenging as it was to get to your comfort zone, maybe it’s time to step out of it to see if good enough really is how you want to operate going forward.